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LIQUID CRYSTALS, 1993, VOL. 14, No. 4, 1243-1253 

Landau-de Gennes theory of anchoring transitions 
at a nematic liquid crystalsubstrate interface 

by P. I. C. TEIXEIRA* and T. J. SLUCKIN 
Faculty of Mathematical Studies, University of Southampton, 

Southampton SO9 5NH, England 

and D. E. SULLIVAN 
Department of Physics and Guelph-Waterloo Program 
for Graduate Work in Physics, University of Guelph, 

Guelph, Ontario N1G 2W1, Canada 

We have used Landau-de Gennes theory to study anchoring and anchoring 
transitions at the interface between a nematic liquid crystal and a smooth solid 
substrate. In contrast to earlier work by Sen and Sullivan, we allow for a spatially 
varying tilt angle and solve the Euler-Lagrange equations requiring that the order 
parameters be uniform far from the wall. We have found that temperature-driven 
anchoring transitions akin to those observed experimentally can be obtained either 
as a result of the change in the surface order parameter or due to competition 
between the ordering effects of the solid surface and the nascent isotropic-nematic 
interface as TN, is approached, in the regime of complete wetting by the isotropic 
phase. Predictions have also been made for the experimentally observable values of 
the anchoring energy. 

1. Introduction 
Surface phenomena in liquid crystal systems have attracted a great deal of attention 

recently, on account not only of their technological importance but also of their interest 
as a fundamental problem in the statistical mechanics of non-uniform, ordered fluids. 
Anchoring phenomena in’particular-the alignment of a liquid crystal by a substrate 
[ 11-are crucial in the fabrication of display devices; furthermore, they provide 
invaluable insight into the nature of liquid crystal-liquid crystal and substrate 
interactions. In this paper we shall restrict ourselves to the anchoring of nematogenic 
liquid crystals, although other mesophases have been shown to exhibit similar (or 
related) behaviour, which opens up exciting new areas of research [2]. 

An anchoring transition is a transition between different types of anchoring (for a 
complete anchoring lexicon, see for example [2]), for instance conical to homeotropic 
or homeotropic to planar [3], which results from varying some parameter determining 
the interfacial structure. In the former example, the transition takes place continuously, 
i.e. it is characterized by a smooth variation of the tilt angle [3] at the surface, whereas 
the latter involves a discontinuous jump in the direction of preferential alignment. 

Experimental observations of anchoring transitions have been reported since the 
mid-1970s [l]; their main driving forces seem to be temperature [4-141, addition of 
impurities [15-191 or, more recently, strains acting on the substrate [20]. In two 
previous papers, two of us [21,22] have attempted to formulate a microscopic model of 
impurity-driven anchoring transitions which would explain the temperature- 
independence, or ‘universality’, of the azimuthal angle curves of E9 on gypsum when 
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1244 P. I. C .  Teixeira et al. 

plotted as a function of the relative humidity of the medium, as observed by Pieranski 
and co-workers [17]. Although the theory enjoyed some success in predicting 
anchoring behaviour akin to that observed experimentally, for not entirely unrealistic 
values of the microscopic parameters, it contains a number of inconsistencies and 
oversimplifications which severely restrict its applicability. 

We are now concerned with modelling the anchoring behaviour originally observed 
by Ryschenkow and KlCman [4,5] and more recently by Pate1 [14], which can be 
summarized as follows: the tilt angle (measured relative to the surface normal) of 
MBBA spread on a glass surface treated with the products of degradation of heated 
paper is a decreasing function of the temperature in the low temperature region, 
eventually vanishing at T= 30°C (conical to homeotropic transition); anchoring then 
remains homeotropic until immediately below the clearing point ( TNI = 47"C), 
whereupon the tilt angle again becomes finite and is now an increasing function of the 
temperature, approaching 70" as T-+T,. The closeness of the tilt angle at T =  TNI to 
that which is obtained at the nematic-isotropic interface of MBBA (65") is strongly 
suggestive of the operation of some mechanism related to the growth of an isotropic 
wetting film as T-+T,,. The observed re-entrant behaviour could then possibly be 
explained as the result of the competition between the aligning effects of the solid 
substrate and the nascent nematic-isotropic interface, with the latter becoming 
dominant sufficiently close to TNI. In order to test this hypothesis we need a theory 
which is able to describe the formation of nematic/isotropic wetting films, while 
simultaneously allowing for the possible occurrence of biaxiality and non-uniform tilt 
angles close to the substrate. The simplest theory which fulfils these requirements is the 
Landau-de Gennes theory of nematics at surfaces, as formulated by Sen and Sullivan 

This paper is organized as follows: in 8 2 we present the Landau-de Gennes theory 
of a nematic in contact with a solid substrate. The problem of the choice of boundary 
conditions for the Euler-Lagrange minimization equations is discussed in conjunction 
with that of the prediction of experimentally measured anchoring strengths and surface 
tilt angles. In § 3 we present results for the temperature dependence of the equilibrium tilt 
angle and contrast them with the predictions of the naive theory. Moreover, it is shown 
that re-entrant anchoring behaviour may indeed be obtained in the present theory. 
Some preliminary results are also presented for the experimental anchoring energy 
function. Finally in $ 4  we summarize our conclusions and discuss the future 
directions of our research. 

~231. 

2. Theory 
Following Sen and Sullivan [23], we consider a nematic fluid occupying the upper 

half space, in contact with a flat, structureless surface lying in the xOy plane. Neglecting 
fluctuations, the (tensor) order parameter Q can be assumed to vary only in the z 
direction, i.e. perpendicular to the surface. Then according to Landau-de Gennes 
theory, the equilibrium surface tension is the minimum of the functional 

+a, 

0 = 1 dzOL(Q(z)) -fL(Qb) +f&(z))3 +f,(Q(o)), (1) 
0 

where Qb = Q(z+ 00) is the bulk order parameter tensor and = dQ(z)/dz.f, is the bulk 
free energy density, constructed as usual from the invariants of the (traceless) order 
parameter up to fourth order, 

(2) fL(Q) = A Tr Q2 - B Tr Q3 + C(Tr Q2)', 
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Landau-de Gennes theory of anchoring 1245 

where Tr denotes the trace operation, A is a linear function of the temperature, and B 
and C are constants. The curvature termfG is taken from de Gennes’s [24] theory, 

where k is a unit vector along z and L,, L, are temperature-independent elastic 
constants. L,  favours parallel alignment at the nematic-isotropic interface if it is 
positive, and homeotropic if it is negative. 

Finallyf,(Q(O)) has been modelled by the most general expansion of the surface 
energy to order QZ which is consistent with tangential isotropy 

(4) 

where c I - c ~  are constants. This is the nematic analogue of the expression encountered 
in the Landau theory of an Ising model surface [25-271, and it assumes no preferred 
orientation in the plane of the surface. 

f , (Q)= c,k * Q * k + c, Tr Q2 + c3(k* Q . k)’ + c,k * Qz * k, 

We now write Q in the form 
3 u z  

2 Q(z) = tq(3nn -I) + -p(II - mm), (5 )  

where the unit vectors I, m, n form a local orthonormal triad and I is the second rank 
unit tensor. The direction of maximum orientational order is by convention associated 
with the director axis, n. Thus q is the usual uniaxial order parameter, while p is a 
measure of the biaxiality induced by spatial non-uniformity in directions other than n. 
If we neglect twist-type excitations (which is consistent with equation (4)), the director 
can be assumed to lie in a single plane, which we take to be the xOz plane. Hence the 
orientation of the triad depends on a single angle $ = cos- ’ (n * k)-the tilt angle, and 
substitution of equation (5) into (4) yields for the bare surface free energy 

f, = w,, + W ,  COS, +(o) + w4 C O S ~  $(o), (6) 
where 

0 - 2  -q ( 3 112 cL-V)CCi +k4((3)’12P-V?)I 

+ +c,(2q2 + p 2 )  + &((3)1/2p + V I 2 ,  (7 a) 

Equation (6) is similar to that derived in [21] from a microscopic theory using the 
Fowler approximation for the density and order parameter profiles. In [21], the 
equilibrium tilt angle is obtained by minimizing f,; in the present theory it is determined 
by the balance of surface (equations (4) or (6)) and curvature (equation (3)) terms, which 
may lead to quite different results. In particular, solutions which admit a spatially 
varying tilt become possible, if the increase in elastic free energy is outweighed by the 
surface contribution. 

For analytical simplicity it is advantageous to re-write Q in a lab-fixed frame, 
3 112 3 112 

2 2 Q(z)=$,(3kk-I)+-ps(ii -jj)+-vs(ik + ki), (8) 

where i, j, k denote unit vectors along the laboratory x, y ,  z axes, respectively. The new 
variables us, ps, v, are related to q, p, $ by equations (2.16) of [23] with the re-scalings 
given by equations (2.12) of the same reference. 
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1246 P. I. C. Teixeira et al. 

.L = C l V S  + C 2 , d  + c2,d + c2vv,’, (9 c) 

where the reduced elastic constants L, M and the renamed surface constants c2,,, c2,, cZv 
are given by equations (2.19) and (2.20) of [23], respectively. 

The Euler-Lagrange equations to be solved are 

(10 4 

(10 b) 

(10 4 

where t is the reduced temperature (tN, = l), supplemented by the boundary conditions 
at the origin 

a f L  

8% 

a f L  

aPS 

afL  

avs 

6,=-= 2[t + 2(q,’ + vI)]~, - 3(2q,’ - 2 ~ :  + v,’), 

LPs=-=2[t+2(q,’ +p,z +v,z)]p,+ 3(4qsps-(3)1’2v,2), 

MfS=-==[t+2(1,’ +p; + v ~ ) ] v ~ - ~ ( ~ , + ( ~ ) ” ~ ~ ~ ) v , ,  

Mir,(O) = 2~,,~,(0). (11 4 
We are still free to choose the remaining three boundary conditions. One possibility is 
to require that the order parameters q,, ,us, v, be uniform sufficiently far from the 
substrate, i.e. 

~ , ( z ~ o o ) = ~ , ( z ~ o o ) = \ i , ( z ~ o o ) = o ,  (12) 

thus enabling us to find the equilibrium tilt angle (i.e. that which minimizes the surface 
tension) directly as a function of temperature and thereby study temperature-driven 
orientational transitions. If, on the other hand, we are concerned with finding the 
anchoring energy, the appropriate boundary conditions are those corresponding to a 
fixed bulk tilt angle t j b  (this is equivalent to placing a strongly anchoring wall a distance 
I from the substrate, which is one of the techniques used in experimental determinations 
of the anchoring energy [28]) which does not necessarily minimize the surface tension 

r]dZ = I )  = qbP2(CoS $bh (13 4 

where the bulk uniaxial order parameter is given by [23] 
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Landau-de Gennes theory of anchoring 1247 

Once equations (10) have been solved for the appropriate choice of boundary 
conditions, the (possibly z-dependent) tilt angle can be found by inverting equations 
(2.16) of [23]: 

If (3)1~2~s-ps+0 and v,#O, then +=n/4; if v,+O, we can have either +=O, if 
simultaneously p s 4 0 ,  or t,b = n/2 otherwise. 

The problem of making predictions for the experimentally observable anchoring 
energy and surface tilt angle requires consideration of the experimental techniques used 
for measuring these quantities. In the more common techniques [28], the bulk tilt angle 
is fixed either by an external field or by a strongly anchoring surface placed a distance 1 
from the substrate under study. Elastic theory [24] is then used to find the surface tilt by 
extrapolation from the bulk, and the anchoring energy is found by balancing torques at 
the surface. Here we shall discuss the implications of the latter method only; the 
inclusion of an applied field would add terms to the equations, and will be dealt with in 
a future publication. We start by noting that the experimentally measured surface tilt 
angles and anchoring energies correspond to particular choices of the Gibbs dividing 
surface [28], which do not necessarily coincide with the position of the substrate in a 
semi-microscopic theory such as ours. We defer consideration of this non-trivial 
problem and write the surface tension as the sum of an elastic and a surface 
contribution, 

where 1 is the size of the system, t,bo, $(1) are the surface and bulk tilt angles, respectively, 
K(=3Mq:) is an elastic constant, and Wi are renormalized surface coefficients, not 
necessarily identical to the bare ones given by equations (7). (Note that this corresponds 
to taking the Gibbs dividing surface [28] to coincide with the solid substrate on the 
microscopic scale.) If Jlo is small (sin i,b0 N I)~), the boundary condition at the surface 
reads 

where W = W, + 2W4. Substitution into equation (16) yields, after straightforward 
manipulations, 

1 
a= I p ( 1 )  + W, + w, + W4. 21/K - l / W  

Hence W can be obtained from the slope of a versus t,b2(1). We expect this quantity to 
change sign at a conical to homeotropic transition [3]. 

3. Results 
Equations (10) were solved by approximating the second derivatives of the order 

parameters by finite differences and then solving the resulting 3 N coupled algebraic 
equations in 3N unknowns ( N  is the number of lattice points) using a generalization of 
the Newton-Raphson method [29]. Typically, large numbers of iterations (> 1OOO) 
were needed to achieve convergence if t,b # 0 or n # n/2, all the more so as anchoring 
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1248 P. I. C. Teixeira et al. 
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transitions were approached. All results presented pertain to the regime of complete 
wetting by the isotropicphase, which is thought to be experimentally relevant [4,5,14]. 

In figure 1 we contrast the numerically calculated bulk tilt angle (see equations (10) 
with boundary conditions of equation (12)) with that obtained via the Fowler 
approximation (i.e. minimization of equation (6) with equation (7) and = ylb, p = pb 
=O). The latter completely misses the conical to homeotropic transition borne out by 
Landau-de Gennes theory, and further overestimates the surface tension considerably 
(see figure 2). Input parameters are such as to be appropriate to a substrate which 

.. . ... .'. '. '. '. '. '. 
'\ 

.'. 
"' 

'1' 

.. 'X. 

0.20 -- ----------_--______ 
-- -- -- ---------- -- 

0.1 5 - 

$ 0.10- 

0.05 - 

0.0 - 
I I I I 1 

0.7 0.8 0.9 0.6 
t 

0.5 

Figure 1. Bulk tilt angle versus reduced temperature in regime of complete wetting by the 
isotropic phase. Solid line: numerical result; dashed line: Fowler approximation. 
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Landau-de Gennes theory of anchoring 1249 

0.76 0.78 0.80 0.82 0.84 
t 

Figure 3. Bulk tilt angle (solid line) and anchoring energy function ii, (dashed line) in the vicinity 
of the anchoring transition (small + regime). 

0.5 0.6 0.7 0.8 0.9 1 .o 
t 

Figure 4. Bulk tilt angle versus reduced temperature in regime of complete wetting by the 
isotropic phase. The surface favours weaker homeotropic anchoring; the nascent N-I 
interface strongly favours parallel alignment, and the latter eventually wins. 

favours homeotropic anchoring, viz. L,  = L2, c1 = - 0.5, c2v = 0.85, c2,, = c2" = 0.5). The 
transition can be understood in terms of the bare surface energy, equation (6); strictly, 
the most stable alignment is found by minimizing the total free energy o, but this will 
only (slightly) renormalize wi. Minimization off, then yields a conical to homeotropic 
surface transition when w = w2 + 2w4 changes sign from positive to negative [3]. 
Neglecting biaxiality, it follows from equations (7 b) and (7 c) that 

w=w,+2w,=$cclq+3(c3+$c4)q~;  (19) 
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1250 P. I. C. Teixeira et al. 

0.90 0.92 0.94 0.96 0.98 1 .oo 
t 

Figure 5. Surface tension versus reduced temperature as the temperature is increased (solid 
line) and decreased (dashed line). A pre-wetting transition occurs at t N 0.98. 

thus, if c1 <O,  w will be negative provided q becomes small enough. In the regime of 
complete wetting by the isotropic phase, ?,?o<<qb and a transition may be obtained for 
t < NI. Figure 3 shows the renormalized W evaluated from equation (1 8) and the bulk tilt 
angle in the vicinity of the anchoring transition; the transition is fairly well pinpointed 
by the change in sign of W. 

In figure 4 we show the bulk tilt angle versus temperature for L, = 3L,, c1 = - 0.2, 
c,,, = 0.85, c2,, = clV = 0-5. As before, the surface favours homeotropic anchoring, albeit 
less strongly. The tilt angle is now a very weakly decreasing function of t in the low 
temperature regime. As t+ti l ,  an isotropic wetting films starts to grow at the nematic- 
substrate interface; this gives rise to a new source of anchoring, viz. the nascent N-I 
interface, which favours planar anchoring since L, > O  [23]. Hence the tilt angle 
bottoms out and becomes an increasing function oft at t N 0.9, until it finally undergoes 
a discontinuous jump to *=nn/2 at t-0.9885. We believe this transition to be 
associated with a pre-wetting [30] transition of the isotropic wetting film, the signature 
of which is a discontinuity in the slope of the surface tension (cf. figure 5) and a jump in 
the adsorption, defined as 

r + m  

(see figure 6), where q is the averaged order parameter 

q = $Tr Q2)1/2 = (q: + p: + v,")"~ (21) 
It is clear from figure 6 that r-log(tNI-t) as t-ttNI. 

Finally in figure 7 we plot the averaged order parameter profile q = q(z) at three 
different temperatures; the profile corresponding to t = 0.988 is in the metastable region 
of the thin film regime. At t = 0.99, the profile has changed qualitatively: it is no longer 
monotonic, and the order parameter at the surface is now very small. As we move away 
from the wall, it first dips very close to zero, signalling the onset of an isotropic wetting 
film, before rising to the bulk value pertaining to the bulk nematic phase. 
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0.2 . 

0.0 . 
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/ ;  
1 : :  

..... 

0.0005 0.0050 0.0500 

hit 
Figure 6. Adsorption versus reduced temperature as the temperature is increased (solid line) 

and decreased (dashed line). Note the logarithmic behaviour as t-+tG,. 
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1252 P. I. C. Teixeira et al. 

4. Discussion and conclusions 
We have formulated a Landau-de Gennes theory of temperature-driven anchoring 

transitions at a nematic liquid crystal-substrate interface which incorporates surface 
biaxiality and allows for non-uniform order parameter and director profiles. However, 
it neglects all substrate structure and does not allow the density to vary self- 
consistently. 

The theory successfully anchoring transitions due to: (i) dehancement of the surface 
order parameter; (ii) competition between the aligning effects of the solid surface and 
the nascent interface between an incipient wetting film and the bulk medium, either of 
which is missed by the naYve Fowler approximation. Moreover, the latter effect gives 
rise to a non-monotonic temperature dependence of the director orientation, bearing 
strong resemblances to experimentally observed phenomena [4,5,14]. The conical to 
homeotropic transition which obtains for sufficiently high (low) L,(lc, I) seems to be 
always discontinuous and associated with a pre-wetting transition [30] of the isotropic 
wetting film. 

A number of points still need clarification. Firstly, we have not yet been able to 
reach a thermodynamically unambiguous definition of surface tilt angle (or, in other 
words, to pinpoint precisely the Gibbs dividing surface in the sense of Yokoyama [28]); 
hence all our predictions of surface tilts and anchoring energies should be taken with 
circumspection. Secondly, even if our procedure is sound in principle, there is no 
guarantee that it will allow a reliable determination of the anchoring energy function, 
owing to the linear approximation used for the bare surface energy. One possible 
solution would be to include the effect of an external field, which we are now 
considering. Finally, we feel that we can be confident that, for the system sizes 
investigated, the use of boundary conditions in equation (12) leads to essentially the 
same results as the use of boundary conditions of equation (13) followed by 
minimization of the surface tension. 

The authors would like to thank Dr M. A. Osipov for many stimulating discussions 
and comments, and Dr J. S. Pate1 for communicating his results prior to publication. 
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